Evaluation of Biosolid Aerosols for Staphylococcus aureus

Charles P. Gerba
Patricia A. Rusin
Sheri I. Maxwell
John P. Brooks
Ian L. Pepper

THE STAPHYLOCOCCUS STORY: FACTS

Staphylococcus aureus

- Gram positive coccus
- Commonly found within nose of healthy people
- Can result inminor or major skin infections
- To date, no scientific data or epidemiological study has been published linking S. aureus to land application of biosolids

THE STAPHYLOCOCCUS STORY: ALLEGATIONS

- S. aureus is found in biosolids
- S. aureus from biosolids results in adverse public health affects
- S. aureus from land applied biosolids has resulted in deaths
- Irritant chemicals increase host susceptibility (no scientific evidence)

EXPOSURES TO STAPHYLOCOCCUS AUREUS

<u>Carriers</u>	<u>%</u>
Children	25
Adults	20-40
Physicists	50
Hospital Workers	90
Occurs in household dust	Not known

Biosolid

M Staphylococcus Enrichment Broth



Mannitol Salt Agar and Baird Parker Medium

Staphylococcus confirmation:

- gram positive
- catalase positive
- coagulase positive
- slide coagulase positive
- resistant to polymyxin B
- cocci

S. AUREUS RESEARCH AT THE UNIVERSITY OF ARIZONA

- Samples collected from 14 sites across the United States, SW USA to East Coast
- Five sewage samples
- 23 different biosolid samples
- 27 aerosol samples from land application sites

TYPES OF BIOSOLIDS ANALYSED

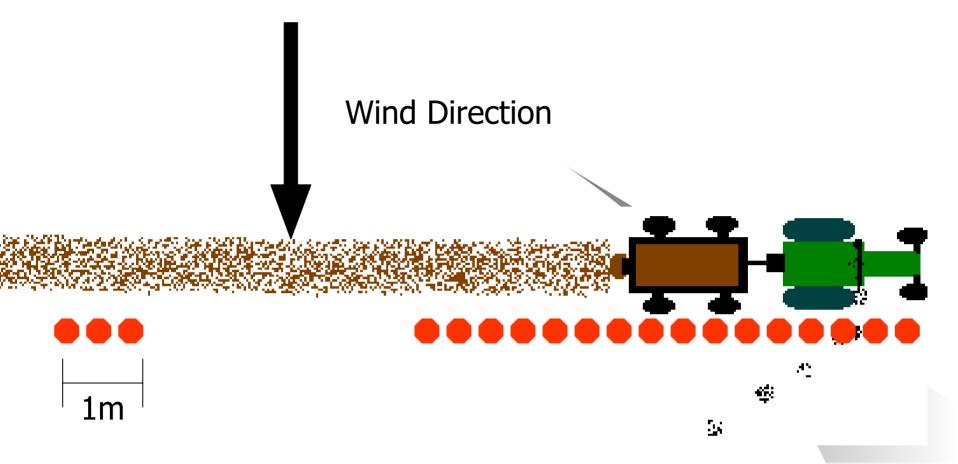
Class B

- Anaerobic mesophilic digestion
- Aerobic mesophilic digestion
- Aerobic mesophilic digestion, lime
- Anaerobic mesophilic digestion, lime

Class A

- Thermophilic aerobic digestion
- Anaerobic thermophilic digestion
- Heat dried pellets made after anaerobic mesophilic digestion
- Heat dried pellets made from undigested sewage
- Heat dried pellets following anaerobic mesophilic digestion
- Heat dried pellets from mixture of undigested thickened primary and thickened waste activated sludge
- Composted aerobic pile

AEROSOL SAMPLES


- 2 m downwind of liquid spray biosolids
- 23 m downwind of hopper applying biosolids
- 29 m downwind of hopper applying biosolids
- 11 m downwind of truck unloading biosolids
- 2 m downwind of loading biosolids into hopper

Triplicate

Samplers at Work

Biosoilds spreader is a point source for short distances (1m)

(Microorganisms aerosolized/meter) ● (meters driven)

Total microorganisms aerosolized

Tucson Operation

- 4,250 gal Betterbuilt® spray tanker
 - Traveling @ 3mph

M ojave, AZ Operation

- Application Method Slinger
 - Sling Biosolids 60-90'

Solano, CA Operation

- Application Method Hopper
 - Spread Biosolids

Un loading

Loading

S. AUREUS RESEARCH AT THE UNIVERSITY OF ARIZONA

- S. aureus found in 3 of 5 sewage
 samples (60 % incidence)
- S. aureus never detected in 23
 biosolid samples (8 Class A and
 15 Class B) (0% incidence)
- S. aureus never detected in
 27 bioaerosol samples
 (0% incidence)
- Limit of Detection less than 30 per 100 gram of biosolids

S.AUREUS RESEARCH AT THE UNIVERSITY OF ARIZONA— DISCUSSION

- This study provides scientific evidence for the absence of
 S. aureus in land applied biosolids
- It shows that biosolids are not a source of S. aureus human exposure
- Therefore, biosolids cannot be a source of S. aureus infection in humans

LATEST ALLEGATION

- Irritant chemicals increase host susceptibility to Staphylococcus aureus infections
- S. aureus ubiquitous

PURE SPECULATION

- No precedent for this phenomenon
- No documented evidence in the literature